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Abstract. We report on the measurement of the CKM angle γ in B±→DK± decays with the BABAR
detector. A general overview of different methods of analysis and a critical discussion of the most sensitive
methods are presented here.

1 Introduction

CP violation (CPV ) was first established in KL→ π+π−

decays in 1964 [1]. It has been accomodated in the stan-
dard model (SM) by a CP -violating phase in the matrix
that describes the mixing of the quarks under the weak in-
teraction, known as the CKM matrix [2, 3]. The unitarity
constraints of the CKM matrix gives us VudV

∗
ub+VcdV

∗
cb+

VtdV
∗
tb = 0, the so-called Unitarity Triangle relation, rep-

resented in Fig. 1. CPV is proportional to the area of the
triangle and requires that the angles and sides are different
from zero. The primary goal of the B-factories is the study
of CP violation in the Bd and Bu meson system. Overcon-
training of the Unitarity Triangle parameters, measuring
the sides and the angles of the triangle, represents one of
the most stringent tests of the SM. The precise measure-
ment of the angle γ ≡ arg(−VudV ∗ub/VcdV

∗
cb) is a crucial

goal for this scientific program, yet it is also one of the most
difficult to achieve.

2 General overview of the methods

There are several decay modes that can be used to measure
the angle γ, each with its own merits and drawbacks.
In B±→DK± decays1, if we consider the decay modes

of the neutral D meson that are accessible to both D0

and D0, we can reach the final state through two different
quark-level processes, as shown in Fig. 2. The interference
between the two quark-level processes b→ uc̄s and b→ cūs
(respectively B−→D0K− and B−→D0K−) introduces
a relative phase γ in the decay amplitude.

By neglecting the D0−D0 mixing [4], it is possible
to determine the angle γ without hadronic uncertainties,

a email: nicola.neri@pi.infn.it
1 In what follows, the symbol D refers to either D0 or D0.

since the main contributions to the decay amplitude come
from tree-level transitions. Several decay modes can be
studied, including B±→DK±, B−→D∗K−and B−→
DK∗−, which have the same quark-level process in com-
mon. In the following, whenever we writeB±→D(∗)K(∗)±

we intend all the above-mentioned decay modes, unless
explicitely stated. Three different analysis methods have
been used so far:

– GLW method [5, 6]: where the D is recontructed in CP
eigenstates (D0CP ) decay modes.
– ADS method [7, 8]: with D reconstructed in doubly
Cabibbo suppressed decay modes.

Fig. 1. Graphical representation of the unitarity constraint
VudV

∗
ub+VcdV

∗
cb+VtdV

∗
tb = 0 as a triangle in the complex plane

Fig. 2.Main diagrams contributing toB±→DK± decay. The
left diagram proceeds via Vcb transition, while the right diagram
proceeds via Vub transition and is color suppressed
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– Dalitz method [9]: where the D is reconstructed in
3-body final states and the angle γ is extracted through
an analysis of the distribution of the events in the D
Dalitz plane [10].

The sensitivity of the different methods to γ depends on
the magnitude of the ratio

rB =

∣
∣
∣
∣

A(b→ uc̄s)

A(b→ cūs)

∣
∣
∣
∣

of the b→ uc̄s amplitude with respect to the b→ cūs one.
The value of rB is a key quantity which has a signifi-
cant impact on the ability to measure the CKM angle γ
at the B-factories and beyond. Note that rB takes differ-
ent values for different B decays. Theoretical expectations
for rB are in the range ≈ 0.1–0.2 [5, 6, 11], in agreement
with the 90% C.L. upper limits on rB set by BABAR
(rB < 0.23) [12, 13] and Belle (rB < 0.18) [14] through the
study of B−→DK−, D→K+π− decays.

3 The GLW method: B�→DK�

with D0CP decays

This method considers the B±→DK± decays , where the
D decays to a CP eigenstate. The CP observables are:

RCP± ≡
2
[

B
(

B−→D0CP±K
−
)

+B
(

B+→D0CP±K
+
)]

B (B−→D0K−)+B
(

B+→D0K+
)

≡ 1+ r2B±2rB cos δB cos γ ,

ACP± ≡
B
(
B−→D0CP±K

−
)
−B
(
B+→D0CP±K

+
)

B
(
B−→D0CP±K

−
)
+B
(
B+→D0CP±K

+
)

≡
±2 rB sin δB sinγ

RCP±
,

where δB is the strong phase difference between the Vub
and the Vcb mediated amplitudes. Here, D

0
CP± = (D

0±
D0)/

√
2 are the CP eigenstates of the neutral D meson

system. The main advantage of this method is that γ can
be extracted in a theoretically-clean manner if one recon-
structs D0CP -even and D

0
CP -odd decays. In fact, the num-

ber of unknowns is three (rB , γ, δB) and we have three
linear independent observables. However, an 8-fold ambi-
guity on the value of γ is not resolved since the ambiguities
on (γ, δB)→ (δB, γ) and on the sign of sin γ, which admits
four different solutions, are indistinguishable. In princi-
ple, carrying out analyses for the different decay modes of

Table 1.Measured ratios RCP± and ACP± for CP -even and CP -odd D decay modes. The first error is statistical, the second is
systematic

B mode N(BB̄)×106 RCP+ ACP+ RCP− ACP−

B±→DK± 232 0.90±0.12±0.04 0.35±0.13±0.04 0.86±0.10±0.05 −0.06±0.13±0.04
B±→D∗K± 123 1.06±0.26+0.10−0.09 −0.10±0.23+0.03−0.03 – –

B±→DK∗± 232 1.96±0.40±0.11 −0.08±0.19±0.08 0.65±0.26±0.08 −0.26±0.40±0.12

B±→DCPX±, where X± =K±,K±π0,K0Sπ
±, (Kππ)±,

makes it possible to solve the ambiguity on the magni-
tude of sin γ, since each of the decay modes has the same
weak phase γ but a different final-state phase difference δB.
The event yield is similar for the CP -even and the CP -odd
decay modes – almost 150 signal events with the present
statistics in B±→DK± decay modes. Figure 3 shows the
∆E distribution for the signal and background events
of the reconstructed modes: D0CP+→ π

+π−,K+K−, and
D0CP−→K

0
Sπ
0,K0Sω,K

0
Sφ. Here, ∆E is the difference be-

tween the measured B meson energy and the energy of the
beam in the center of mass system, and peaks near zero for
signal events.
The total reconstruction efficiencies, based on simu-

lated signal events, are 30%–40% for theD0CP+ modes and
10%–20% for the D0CP−. Experimentally, the RCP± ratios
are computed using the RCP± � R±/R relations, where
the quantities R and R± are defined as:

R=
B(B−→D0K−)+B(B+→D0K+)

B(B−→D0π−)+B(B+→D0π+)
,

R± =
B(B−→D0CP±K

−)+B(B+→D0CP±K
+)

B(B−→D0CP±π
−)+B(B+→D0CP±π

+)
.

Fig. 3. Distributions of ∆E for events enhanced in B−→DK−

signal. Top: B−→DCP+K
−; bottom: B−→DCP−K

−. Solid
curves represent projections of the maximum likelihood fit;
dashed , dashed-dotted and dotted curves represent the B−→
DK−, B−→Dπ− and background contributions
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Fig. 4. mES distributions for candidate
signal events with the fit model overlaid.
a D̄K events; b D�K events with D∗→
Dπ0; c D�K events with D∗→Dγ

Systematic uncertainties are canceled out in the measure-
ment of these double ratios. The results for the RCP and
ACP observables using BABAR data [15–17] are reported
in Table 1. The precision of these measurements does not
significantly constrain the value of γ, but when combined
with the existing measurements of the B±→D(∗)K(∗)±

decays, it will improve the knowledge of the angle γ and of
the parameter rB.

4 The ADS method: B�→DK�with
Double-Cabibbo-Suppressed D decays

In the ADS method, the favored B decay (B−→D0K−)
followed by the doubly CKM-suppressed D decay (D0→
K+π−) interferes with the suppressed B decay (B− →
D̄0K−) followed by the CKM-favored D decay (D0 →
K+π−). As a result, the two interfering amplitudes become
comparable. The CP asymmetry is potentially larger in
these modes than in the GLWmethod, however the decays
have a smaller branching ratio, on the order of 10−7.
The observables sensitive to the CP parameters are

RADS ≡
B ([K+π−]DK−)+B ([K−π+]DK+)

B ([K−π+]DK−)+B ([K+π−]DK+)

≡ r2B+ r
2
D+2rBrD cosγ cos(δB+ δD)

AADS ≡
B ([K+π−]DK−)−B ([K+π−]DK+)

B ([K+π−]DK−)+B ([K+π−]DK+)

≡
2 rBrD sinγ sin(δB+ δD)

r2B+ r
2
D+2rBrD cos γ cos(δB+ δD)

,

where δD is the relative strong phase in the D
0 decay and

rD ≡
∣
∣
∣
A(D0→K+π−)
A(D0→K−π+)

∣
∣
∣ is the magnitude of the ratio of the

amplitude of the doubly-Cabibbo-suppressed D0 decay to
that of the Cabibbo-allowed one. The value of rD has been
measured to be rD = 0.060±0.002 [18].
In this method, each B decay mode has two inde-

pedent equations (RADS, AADS) that cannot be solved
for three unknowns (rB , γ, δB + δD). In order to deter-
mine the value of γ, for a given B decay mode it is ne-
cessary to reconstruct at least two different D0 decay
modes, such as B−→ [K+π−]DK−, B−→ [K∗+π−]DK−

or B−→ [K+ρ−]DK−. In the case of twoD0 decay modes,
it is possible to extract the value of γ up to a 16-fold am-
biguity, while in the case of three D0 decay modes there
remains a 4-fold ambiguity [7, 8].

Fig. 5. Expectations for RKπ and the number of signal events
vs. rB . Dark filled-in area: allowed region for any value of δ,
with a±1σ variation on rD, and 51

◦ < γ < 66◦. Hatched area:
additional allowed region with no constraint on γ. Note that
the uncertainty on rD has a very small effect on the size of
the allowed regions. The horizontal line represents the 90%
C.L. limit RKπ < 0.029. The vertical dashed lines are drawn at
rB = 0.203 and rB = 0.233. They represent the 90% C.L. upper
limits on rB with and without the constraint on γ. The light
filled-in area represents the 68% C.L. region corresponding to

RKπ = 0.013±
0.011
0.009

Table 2.Measured charge-independent ratios RADS for B
±→

D(∗)K(∗)± decay modes. Where a single term for the error
is specified, it includes the statistical and the systematic con-
tribution, otherwise the first error is statistical, the second is
systematic. The 90% C.L. limits reported are evaluated with-
out any assumptions for the values of γ and δB+δD. The result

for B±→DK∗± is obtained combining the ADS and GLW
measurements

B mode RADS rB

B±→DK± < 0.029 90% C.L. rB < 0.23

B±→D∗K± < 0.023 90% C.L. r∗B
2
< (0.16)2

B±→DK∗± 0.046±0.031±0.08 0.28+0.006−0.010
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The addition of different B decay modes is helpful to
constrain the value of γ. Particularly interesting are B−→
D∗K− decays, where the D∗ is reconstructed in D0π0 and
D0γ. In fact, there is an effective strong phase shift of π
between the two cases [19], leading to two different R∗ADS
expressions:2

R∗ADS,Dπ0 = r
∗2
B + r

2
D+2r

∗
BrD cos γ cos(δ

∗
B+ δD),

R∗ADS,Dγ = r
∗2
B + r

2
D−2r

∗
BrD cos γ cos(δ

∗
B+ δD),

where R∗
ADS,Dπ0

(R∗ADS,Dγ) is the charge-independent

ratio for the B− → D∗K− with D∗ 0 → D0π0 (D∗ 0 →
D0γ). Hence in the case of B−→D∗K−, it is straightfor-
ward to determine the value for r∗B through the relation

R∗
ADS,Dπ0

+R∗ADS,Dγ

2
= r∗B

2+ r2D .

In Fig. 4 it is shown the mES distribution with fit model
overload for candidate signal events. With the present
statistics there is no evident signal in B±→ D(∗)K(∗)±

decay modes at the B-factories. The experimental observ-
ables RADS have been measured in B

±→D(∗)K(∗)± de-
cays and they were found to be consistent with zero. How-
ever, it is possible to set an upper limit to the value of rB as
shown in Fig. 5. The summary of the results is reported in
Table 2.

5 The Dalitz method: B�→DK�

with a Dalitz analysis
of the D0→K0Sπ

+π� decay

In the previously described methods, if the relative strong
phases δB vanish, the sensitivity to γ is significantly re-
duced. In general, having large interfering amplitudes
with relatively strong phases enhances the sensitivity
to the phase γ. The main advantage of the method [9]
is that it involves the entire resonant structure of the
D0 → K0Sπ

+π− three-body decay, with interference be-
tween doubly-Cabibbo-suppressed, Cabibbo-allowed and
CP -eigenstate amplitudes all providing the sensitivity to
γ. No branching ratio measurements are needed and only
charged particles are involved in the final states, which
results in a higher reconstruction efficiency and low back-
ground. The price to pay is that it requires a detailed study
of the resonances and their interference through a Dalitz
plot technique [20].
Unless otherwise stated, we use the term “Dalitz plot”

to refer to the allowed kinematic region in the two-dimensi-
onal squared space m2− and m

2
+, where K

0
Sπ
− and K0Sπ

+

m2− and m
2
+ are the invariant masses of K

0
Sπ
− and K0Sπ

+

respectively.

2 Here and in the following the ’*’ symbol indicates that the
specified value refers to the B−→D∗K− decay mode.

Let us focus on the following cascade decay3

B−→DK−→ (KSπ
−π+)DK

− , (1)

using the notation of Giri et al. [9] to define the amplitudes

A(B−→D0K−)≡AB ,

A(B−→D0K−)≡ABrBe
i(δB−γ) . (2)

The same definitions apply to the amplitudes for the CP
conjugate cascade B+ → DK+ → (KS π+π−)DK+ with
the change of weak phase sign γ→−γ in (2). We have set
the strong phase of AB to zero by convention, so that δB is
the difference of strong phases between the two amplitudes.
The value of |AB| is known from the measurement of the
B−→D0K− decaywidthusing flavor specific decays ofD0.
The amplitude A(B− → D0K−) is color suppressed and
cannot be determined from experiment in this way [7, 8].
Assuming CP is conserved in D0 → K0Sπ

+π− de-
cay [21], we define the decay amplitude of the A(B−→
DK−) decays, withD0→K0Sπ

+π− as

AD(m
2
−,m

2
+)+κrBe

i(δB−γ)AD(m
2
+,m

2
−) , (3)

where AD(m2−,m
2
+) is the D

0→K0Sπ
+π− decay ampli-

tude. As a consequence of parity and angular momentum
conservation in the B−→D∗K− decay, the factor κ takes
the value +1 for B−→D∗K− (D∗→D0π0), and −1 for
B−→D∗K− (D∗→D0γ) [19].
Amodel dependent parameterization of the Dalitz stru-

cture can be introduced to reduce the number of unknown
parameters to extract from the data. If the functional de-
pendence of both the moduli and the phases of the D0

meson decay amplitudes AD(m
2
−,m

2
+) were known, then

the analysis would be simplified. There would be only three
variables, rB , δB, and γ, that need to be fitted. A plausible
assumption, confirmed by data, is that a significant part
of the three-body D0→KSπ−π+ decay proceeds via two-
body resonances. The D0 → K0Sπ

−π+ decay amplitude
AD(m2−,m

2
+) hence can be determined from an unbinned

maximum-likelihood fit to the Dalitz plot distribution of
a D0 sample from D∗+→D0π+ decays reconstructed on
data.
A phenomenological model to describe AD(m2−,m

2
+),

based on Breit–Wigner (BW) parameterizations of a set
of resonances, can be used. The decay amplitude of the
model is then expressed as a sum of two-body decay-matrix
elements (subscript r) and a non-resonant (subscript NR)
contribution,

AD(m
2
−,m

2
+) =Σrare

iφrAr(m
2
−,m

2
+)+aNRe

iφNR ,
(4)

where each term is parameterized with an amplitude ar
(aNR) and a phase φr (φNR). The function Ar(m2−,m

2
+)

is the Lorentz-invariant expression for the matrix element

3 In the following discussion we neglect D0−D0 mixing,
which is a good approximation in the context of the standard
model [9].
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Table 3. Complex amplitudes are
iφr and fit fractions of the different components

(KSπ
−, KSπ

+, and π+π− resonances) obtained from the fit of the D0→KSπ
−π+

Dalitz distribution from D∗+ →D0π+ events. Errors are statistical only. Masses
and widths of all resonances are taken from [18] with the exception of K∗0 (1430)

+

taken from [31]. The fit fraction is defined for the resonance terms as the integral of
a2r|Ar(m

2
−,m

2
+)|
2 over the Dalitz plane divided by the integral of |AD(m

2
−,m

2
+)|
2.

The sum of fit fractions is 119.5%. A value different from 100% is a consequence of the
interference among the amplitudes

Component Re{are
iφr} Im{are

iφr} Fit fraction (%)

K∗(892)− −1.223±0.011 1.3461±0.0096 58.1

K∗0 (1430)
− −1.698±0.022 −0.576±0.024 6.7

K∗2 (1430)
− −0.834±0.021 0.931±0.022 3.6

K∗(1410)− −0.248±0.038 −0.108±0.031 0.1

K∗(1680)− −1.285±0.014 0.205±0.013 0.6

K∗(892)+ 0.0997±0.0036 −0.1271±0.0034 0.5

K∗0 (1430)
+ −0.027±0.016 −0.076±0.017 0.0

K∗2 (1430)
+ 0.019±0.017 0.177±0.018 0.1

ρ(770) 1 0 21.6

ω(782) −0.02194±0.00099 0.03942±0.00066 0.7

f2(1270) −0.699±0.018 0.387±0.018 2.1

ρ(1450) 0.253±0.038 0.036±0.055 0.1

Non-resonant −0.99±0.19 3.82±0.13 8.5

f0(980) 0.4465±0.0057 0.2572±0.0081 6.4

f0(1370) 0.95±0.11 −1.619±0.011 2.0

σ 1.28±0.02 0.273±0.024 7.6

σ′ 0.290±0.010 −0.0655±0.0098 0.9

Fig. 6. (a) The D̄0→K0Sπ
−π+ Dalitz

distribution fromD∗−→ D̄0π− events,
and projections on (b) m2+ =m

2
K0Sπ

+ ,

(c) m2− =m
2
K0Sπ

− , and (d) m
2
π+π− .

D0 → K0Sπ
+π− from D∗+ → D0π+

events are also included. The curves
are the reference model fit projections
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Fig. 7. Contours at 39.3% (dark) and
86.5% (light) confidence level (corres-
ponding to two-dimensional one- and
two-standard deviation regions), in-
cluding statistical and systematic un-

certainties, for the (x
(∗)
∓ , y

(∗)
∓ ) parame-

ters for B− (thick and solid lines) and
B+ (thin and dotted lines) decays

of a D0meson decaying into K0Sπ
−π+ through an interme-

diate resonance r, parameterized as a function of position
in the Dalitz plane. For r = ρ(770) and ρ(1450), we use
the functional form suggested in [22], while the remain-
ing resonances can be parameterized by a spin-dependent
relativistic Breit–Wigner distribution [18]. An analogous
phenomenological approach is represented by the K-matrix
formalism [23, 24], which provides a direct way of impos-
ing the unitarity constraint that is not guaranteed in the
case of the BW model and is suited to the study of broad
and overlapping resonances in multi-channel decays. In the
D0→K0Sπ

+π− decay, the K-matrix method is suited to
solve the main limitation of the Breit–Wigner model to
parameterize the ππ S-wave states [25], thus avoiding the
need to introduce the σ scalars.
The Dalitz amplitude AD(m2−,m

2
+) can be written in

this case as a sum of two-body decay matrix elements for
the spin-1, spin-2 and Kπ spin-0 resonances (as in the
Breit–Wigner model), and the ππ spin-0 piece denoted as
F1 is written in terms of the K-matrix. We have

AD(m
2
−,m

2
+) = F1(s)+

∑

r �=ππ S-wave

are
iφrAr(m

2
−,m

2
+) ,

where F1(s) is the contribution of ππ S-wave states,

F1(s) =
∑

j

[I− iK(s)ρ(s)]−11j Pj(s) .

Here, s is the squared mass of the ππ system (m2
π+π−

), I
is the identity matrix, K is the matrix describing the S-
wave scattering process, ρ is the phase-space matrix, and
P is the initial production vector [26]. The index j repre-
sents the jth channel (1 = ππ, 2 =KK, 3 =multi-meson4,
4 = ηη, 5 = ηη′ [27]). The K-matrix parameters can be ob-
tained from [27] from a global fit of the available ππ scat-
tering data from threshold up to 1900MeV/c2.
The BABAR analysis uses, as a “nominal” model, the

isobar model, which consists of 13 resonances leading to 16

4 Multi-meson channel refers to a final state with four pions.

two-body decay amplitudes and phases (see Table 3), plus
the non-resonant contribution.
All the resonances considered in this model are well es-

tablished except for the two scalar ππ resonances, σ and σ′,
whose masses and widths are obtained from our sample.5

Their addition to the model is motivated by an improve-
ment in the description of the data. The D0→K0Sπ

+π−

Dalitz distribution and the fit projections are shown in
Fig. 6. The possible absence of the σ and σ′ resonances is
considered in the evaluation of the systematic errors, fit-
ting the data using the alternative K-matrix model. Once
the AD(m2−,m

2
+) amplitude is obtained from the fit on the

D∗+→D0π+ sample, it can be fed into (3). The extraction
of the angle γ is then performed through a fit to the Dalitz
distribution of the D0 in the B±→ DK± decays. The
value of the CP -odd phase γ changes sign for B+ and B−

in (3), leading to different rates in corresponding regions of
the D0 Dalitz plane for B+ and B− decays. We introduce
here the CP parameters x∓ and y∓ defined respectively
as the real and imaginary parts of rBe

i(δB∓γ), for which
the constraint r2B = x

2
∓+y

2
∓ holds. Experimentally, it was

demonstrated that x∓ and y∓ are well-behaving fitting pa-
rameters that are unbiased with Gaussian errors [28].
The results for the CP variables, using 347 million of

BB̄ events recorded with the BABAR detector, are re-
ported in Table 4 [29]. The results of the fit are represented
showing the 1σ and 2σ two-dimensional counters in Fig. 7.
A frequentist (Neyman) procedure [18, 30] has been

adopted to interpret the measurement of the CP param-
eters (x

(∗)
∓ , y

(∗)
∓ ) reported in Table 4 in terms of confi-

dence regions on p= (γ, rB , δB, r
∗
B, δ

∗
B). For a given p, the

five-dimensional confidence level C is calculated by inte-
grating over all points in the fit parameter space closer
(larger PDF) to p than the fitted data values. The one-
(two-) standard deviation region of the CP parameters
is defined as the set of p values for which confidence
level C is smaller than 3.7% (45.1%). Figure 8 shows the

5 The σ and σ′ masses and widths are determined from
the data. We find (in MeV/c2) Mσ = 490± 6, Γσ = 406± 11,
Mσ′ = 1024±4, and Γσ′ = 89±7, Errors are statistical.
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Fig. 8. Projections in the (a) rB −
γ and (b) r∗B − γ planes of the five-
dimensional one- (dark) and two- (light)
standard deviation regions

Table 4. CP-violating parameters x
(∗)
∓ , y

(∗)
∓ obtained from the

CP fit to the B±→D(∗)K± samples. The first error is statisti-
cal, the second is experimental systematic uncertainty and the
third is the systematic uncertainty associated with the Dalitz
model

CP parameter B±→D(∗)K±

x− 0.041±0.059±0.018±0.011
y− 0.056±0.071±0.007±0.023
x+ −0.072±0.056±0.014±0.029
y+ −0.033±0.066±0.007±0.018
x∗− −0.106±0.091±0.020±0.009
y∗− −0.019±0.096±0.022±0.016
x∗+ 0.084±0.088±0.015±0.018
y∗+ 0.096±0.111±0.032±0.017

two-dimensional projections onto the rB − γ and r∗B − γ
planes, including statistical and systematic uncertainties.
The figure shows that this Dalitz analysis has a two-fold
ambiguity, (γ, δ

(∗)
B )→ (γ+180

◦, δ
(∗)
B +180

◦), as expected
from (3). From the one-dimensional projections we ob-
tain for the weak phase γ = (92±41±11±12)◦, and for
the strong phase differences δB = (118±63±19±36)◦ and
δ∗B = (−62±59±18±10)

◦. No constraints on the phases
are achieved at the level of two standard deviations and
beyond. Similarly, for the magnitude of the ratio of decay
amplitudes rB and r

∗
B we obtain the one (two) standard

deviation constraints rB < 0.140 (rB < 0.195) and 0.017<
r∗B < 0.203 (r

∗
B < 0.279). In all cases, the first error is sta-

tistical, the second systematic and the third is due to the
parametrization of the D0→K0Sπ

+π−decay amplitude.

6 Combined measurements of γ
and projections for the future

The Dalitz method has the best sensitivity to γ with
the current statistics, but it is still not possible to pre-
cisely determine the value. Combining the results of several
methods and different B±→D(∗)K(∗)± decay modes en-
larges the sensitivity to the angle γ. The measurement is
dominated by statistical error, but more data will improve

Fig. 9. Projection of the sensitivity to γ, assuming rB = 0.1,
for the Dalitz method (©), Dalitz + GLW combined (�) and
Dalitz + GLW + ADS combined (�).The horizontal band rep-
resent the error projection due to the phenomenological param-
eterization of the D decay amplitude

the precision. The projections for the measurement are
highly dependent on the value of rB , hence, it is difficult at
this point to make predictions for large statistics. However,
it is possible to make predictions by choosing a specific
value for rB . In Fig. 9 we show the projection for the Dalitz
method and for the combined measurement of the Dalitz
method, GLW and ADS, assuming rB = 0.1. In this sce-
nario, by combining different methods it will be possible to
measure the angle γ with 10◦ error with a 1 ab−1 data sam-
ple, which is within the reach of the BABAR experiment.

Acknowledgements. I wish to thank the EMFCSC of Erice for

the invitation to the Summer School and the Istituto Nazionale
di Fisica Nucleare (INFN) for their support. I would also like
to thank M.A. Giorgi and F. Martinez-Vidal for very useful

discussions.

References

1. J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Phys.
Rev. Lett. 13, 138 (1964)

2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)



494 N. Neri: Measurement of theCKMangle γ inB±→DK± decays with theBABARdetector: status and prospects

3. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652
(1973)

4. Y. Grossman, A. Soffer, J. Zupan, Phys. Rev. D 72, 031501
(2005)

5. M. Gronau, D. London, Phys. Lett. B 253, 483 (1991)
6. M. Gronau, D. Wyler, Phys. Lett. B 265, 172 (1991)
7. D. Atwood, I. Dunietz, A. Soni, Phys. Rev. Lett. 78, 3257
(1997)

8. D. Atwood, I. Dunietz, A. Soni, Phys. Rev. D 63, 036005
(2001)

9. A. Giri, Y. Grossman, A. Soffer, J. Zupan, Phys. Rev. D
68, 054018 (2003)

10. R.H. Dalitz, Philos. Mag. 44, 1068 (1953)
11. M. Gronau, Phys. Lett. B 557, 198 (2003)
12. B. Aubert et al., Phys. Rev. D 72, 032004 (2005)
13. B. Aubert et al., Phys. Rev. D 72, 071104 (2005)
14. M. Saigo et al., Phys. Rev. Lett. 94, 091601 (2005)
15. B. Aubert et al., Phys. Rev. Lett. 73, 051105 (2006)
16. B. Aubert et al., Phys. Rev. Lett. 72, 071103 (2005)
17. B. Aubert et al., Phys. Rev. D 71, 031102 (2005)
18. Particle Data Group, W.-M. Yao et al., J. Phys. G 33, 1
(2006)

19. A. Bondar, T. Gershon, Phys. Rev. D 70, 091503
(2004)

20. Review on Dalitz plot analysis formalism in [18]
21. CLEO Collaboration, D.M. Asner et al., Phys. Rev. D 70,
091101 (2004)

22. G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244
(1968)

23. E.P. Wigner, Phys. Rev. 70, 15 (1946)
24. S.U. Chung et al., Ann. Phys. 4, 404 (1995)
25. Review on Scalar Mesons in [18]
26. I.J.R. Aitchison, Nucl. Phys. A 189, 417 (1972)
27. V.V. Anisovich, A.V. Sarantev, Eur. Phys. J. A 16, 229
(2003)

28. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett.
95, 121802 (2005)

29. BABAR Collaboration, B. Aubert, arXiv:hep-ex/0607104
30. J. Neyman, Phil. Trans. Royal Soc. London, Series A 236,
333 (1937), reprinted in: A selection of Early Statistical Pa-
pers on J. Neyman (University of California Press, Berke-
ley, 1967)

31. E791 Collaboration, E.M. Aitala et. al., Phys. Rev. Lett.
89, 121801 (2002)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


